Nonlinear analytical solution of nearly incompressible hyperelastic cylinder with variable thickness under non-uniform pressure by perturbation technique
Authors
Abstract:
In this paper, nonlinear analytical solution of pressurized thick cylindrical shells with variable thickness made of hyperelastic materials is presented. The governing equilibrium equations for the cylindrical shell with variable thickness under non-uniform internal pressure are derived based on first-order shear deformation theory (FSDT). The shell is assumed to be made of isotropic and homogenous hyperelastic material in nearly incompressible condition. Two-term Mooney-Rivlin type material is considered which is a suitable hyperelastic model for rubbers. Boundary Layer Method of the perturbation theory which is known as Match Asymptotic Expansion (MAE) is used for solving the governing equations. In order to validate the results of the current analytical solution in analyzing pressurized hyperelastic thick cylinder with variable thickness, a numerical solution based on Finite Element Method (FEM) have been investigated. Afterwards, for a rubber case study, displacements, stresses and hydrostatic pressure distribution resulting from MAE and FEM solution have been presented. Furthermore, the effects of geometry, loading, material properties and incompressibility parameter have been studied. Considering the applicability of the rubber elasticity theory to aortic soft tissues such as elastin, the behaviour of blood vessels under non-uniform pressure distribution has been investigated. The results prove the effectiveness of FSDT and MAE combination to derive and solve the governing equations of nonlinear problems such as nearly incompressible hyperelastic shells.
similar resources
Nonlinear analysis of radially functionally graded hyperelastic cylindrical shells with axially-varying thickness and non-uniform pressure loads based on perturbation theory
In this study, nonlinear analysis for thick cylindrical pressure vessels with arbitrary variable thickness made of hyperelastic functionally graded material properties in nearly incompressible state and clamped boundary conditions under non-uniform pressure loading is presented. Thickness and pressure of the shell are considered in axial direction by arbitrary nonlinear profiles. The FG materia...
full textAnalytical Solution for Electro-mechanical Behavior of Piezoelectric Rotating Shaft Reinforced by BNNTs Under Non-axisymmetric Internal Pressure
In this study, two-dimensional electro-mechanical analysis of a composite rotating shaft subjected to non-axisymmetric internal pressure and applied voltage is investigated where hollow piezoelectric shaft reinforced by boron nitride nanotubes (BNNTs). Composite structure is modeled based on piezoelectric fiber reinforced composite (PFRC) theory and a representative volume element has been cons...
full textPressure-Velocity Coupled Finite Volume Solution of Steady Incompressible Invscid Flow Using Artificial Compressibility Technique
Application of the computer simulation for solving the incompressible flow problems motivates developing efficient and accurate numerical models. The set of Inviscid Incompressible Euler equations can be applied for wide range of engineering applications. For the steady state problems, the equation of continuity can be simultaneously solved with the equations of motion in a coupled manner using...
full textAn Analytical Solution for Temperature Distribution and Thermal Strain of FGM Cylinders with Varying Thickness and Temperature-Dependent Properties Using Perturbation Technique
This research presents temperature distribution and thermal strain of functionally graded material cylinders with varying thickness and temperature-dependency properties that are subjected to heat fluxes in their inner and outer layers. The heterogeneous distribution of properties is modeled as a power function. Using first-order temperature theory and the energy method, governing equations are...
full textOn Constructing the Analytical Solutions for Localizations in a Slender Cylinder Composed of an Incompressible Hyperelastic Material
In this paper, we study the localization phenomena in a slender cylinder composed of an incompressible hyperelastic material subjected to axial tension. We aim to construct the analytical solutions based on a three-dimensional setting and use the analytical results to describe the key features observed in the experiments by others. Using a novel approach of coupled series-asymptotic expansions,...
full textVibration analysis of a Timoshenko non-uniform nanobeam based on nonlocal theory: An analytical solution
In this article free vibration of a Timoshenko nanobeam with variable cross-section is investigated using nonlocal elasticity theory within the scope of continuum mechanics. Small scale effects are modelled after Eringen’s nonlocal elasticity theory while the non-uniformity is presented by exponentially varying width through the beam length with constant thickness. Analytical solution is achiev...
full textMy Resources
Journal title
volume 50 issue 2
pages 395- 412
publication date 2019-12-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023